5 research outputs found

    A protocol for the large‐scale analysis of reefs using Structure from Motion photogrammetry

    Get PDF
    1. Substrate complexity is an essential metric of reef health and a strong predictor of several ecological processes connected to the reef, including disturbance, resilience, and associated community abundance and diversity. / 2. Underwater Structure from Motion (SfM) photogrammetry has been growing rapidly in use over the last 5 years due to advances in computing power, reduced costs of underwater digital cameras and a push for reproducible data. This has led to the adaptation of an originally terrestrial survey technique into the marine realm, which can now be applied at the habitat scale. / 3. This technique allows researchers to make detailed 3D reconstructions of reef surfaces for morphometric analysis of reef physical structure and perform large‐scale image‐mosaic mapping. SfM is useful for both reef‐scale and colony‐scale assessments, where visual or acoustic methods are impractical or not sufficiently detailed. / 4. Here we provide a protocol for the collection, analysis and display of 3D reef data, focussing on large‐scale habitat assessments of coral reefs using primarily open‐source software. We further suggest applications for other underwater environments and scales of assessment, and hope this standardized protocol will help researchers apply this technology and inspire new avenues of ecological research

    Mushroom to manoeuvre? Using photogrammetry to track the movement and survival of free-living corals

    Get PDF
    Mushroom corals can play an important role in tropical reef ecosystems by providing habitat and performing important ecological functions. Unlike most stony corals, free-living mushroom corals can move, both passively and actively, and can use this ability to escape competition or harmful environments. However, as their movement is typically slow, occurs over relatively small scales, and is traditionally hard to measure, their movement ecology is little researched. Nevertheless, quantitative geospatial data on species’ movement, distribution, survival, and interaction can improve mechanistic modelling of community dynamics in various environments. We use ‘structure from motion’ photogrammetry to track 51 individual corals’ 3D movement and survival over one year within an isolated and enclosed lagoon. This technique essentially provides a large-scale quantitative community time-lapse and allows detailed individual level life-history data to be collected over spatial and temporal scales that were previously impractical

    A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordtribute to global conservation targets, we review outcomes of the last decade of marine conservation research in the British Indian Ocean Territory (BIOT), one of the largest MPAs in the world. The BIOT MPA consists of the atolls of the Chagos Archipelago, interspersed with and surrounded by deep oceanic waters. Islands around the atoll rims serve as nesting grounds for sea birds. Extensive and diverse shallow and mesophotic reef habitats provide essential habitat and feeding grounds for all marine life, and the absence of local human impacts may improve recovery after coral bleaching events. Census data have shown recent increases in the abundance of sea turtles, high numbers of nesting seabirds and high fsh abundance, at least some of which is linked to the lack of recent harvesting. For example, across the archipelago the annual number of green turtle clutches (Chelonia mydas) is~20,500 and increasing and the number of seabirds is ~1 million. Animal tracking studies have shown that some taxa breed and/or forage consistently within the MPA (e.g. some reef fshes, elasmobranchs and seabirds), suggesting the MPA has the potential to provide long-term protection. In contrast, post-nesting green turtles travel up to 4000 km to distant foraging sites, so the protected beaches in the Chagos Archipelago provide a nesting sanctuary for individuals that forage across an ocean basin and several geopolitical borders. Surveys using divers and underwater video systems show high habitat diversity and abundant marine life on all trophic levels. For example, coral cover can be as high as 40–50%. Ecological studies are shedding light on how remote ecosystems function, connect to each other and respond to climate-driven stressors compared to other locations that are more locally impacted. However, important threats to this MPA have been identifed, particularly global heating events, and Illegal, Unreported and Unregulated (IUU) fshing activity, which considerably impact both reef and pelagic fshes.Bertarelli Foundatio

    Coral bleaching impacts from back-to-back 2015–2016 thermal anomalies in the remote central Indian Ocean

    No full text
    Studying scleractinian coral bleaching and recovery dynamics in remote, isolated reef systems offers an opportunity to examine impacts of global reef stressors in the absence of local human threats. Reefs in the Chagos Archipelago, central Indian Ocean, suffered severe bleaching and mortality in 2015 following a 7.5 maximum degree heating weeks (DHWs) thermal anomaly, causing a 60% coral cover decrease from 30% cover in 2012 to 12% in April 2016. Mortality was taxon specific, with Porites becoming the dominant coral genus post-bleaching because of an 86% decline in Acropora from 14 to 2% cover. Spatial heterogeneity in Acropora mortality across the Archipelago was significantly negatively correlated with variation in DHWs and with chlorophyll-a concentrations. In 2016, a 17.6 maximum DHWs thermal anomaly caused further damage, with 68% of remaining corals bleaching in May 2016, and coral cover further declining by 29% at Peros Banhos Atoll (northern Chagos Archipelago) from 14% in March 2016 to 10% in April 2017. We therefore document back-to-back coral bleaching and mortality events for two successive years in the remote central Indian Ocean. Our results indicate lower coral mortality in 2016 than 2015 despite a more severe thermal anomaly event in 2016. This could be caused by increased thermal resistance and resilience within corals surviving the 2015 thermal anomaly; however, high bleaching prevalence in 2016 suggests there remained a high sensitivity to bleaching. Similar coral mortality and community change were seen in the Chagos Archipelago following the 1998 global bleaching event, from which recovery took 10 yr. This relatively rapid recovery suggests high reef resiliency and indicates that the Archipelago’s lack of local disturbances will increase the probability that the reefs will again recover over time. However, as the return time between thermal anomaly events becomes shorter, this ability to recover will become increasingly compromised

    A review of a decade of lessons from one of the world's largest MPAs: conservation gains and key challenges

    No full text
    Given the recent trend towards establishing very large marine protected areas (MPAs) and the high potential of these to contribute to global conservation targets, we review outcomes of the last decade of marine conservation research in the British Indian Ocean Territory (BIOT), one of the largest MPAs in the world. The BIOT MPA consists of the atolls of the Chagos Archipelago, interspersed with and surrounded by deep oceanic waters. Islands around the atoll rims serve as nesting grounds for sea birds. Extensive and diverse shallow and mesophotic reef habitats provide essential habitat and feeding grounds for all marine life, and the absence of local human impacts may improve recovery after coral bleaching events. Census data have shown recent increases in the abundance of sea turtles, high numbers of nesting seabirds and high fish abundance, at least some of which is linked to the lack of recent harvesting. For example, across the archipelago the annual number of green turtle clutches (Chelonia mydas) is ~ 20,500 and increasing and the number of seabirds is ~ 1 million. Animal tracking studies have shown that some taxa breed and/or forage consistently within the MPA (e.g. some reef fishes, elasmobranchs and seabirds), suggesting the MPA has the potential to provide long-term protection. In contrast, post-nesting green turtles travel up to 4000 km to distant foraging sites, so the protected beaches in the Chagos Archipelago provide a nesting sanctuary for individuals that forage across an ocean basin and several geopolitical borders. Surveys using divers and underwater video systems show high habitat diversity and abundant marine life on all trophic levels. For example, coral cover can be as high as 40–50%. Ecological studies are shedding light on how remote ecosystems function, connect to each other and respond to climate-driven stressors compared to other locations that are more locally impacted. However, important threats to this MPA have been identified, particularly global heating events, and Illegal, Unreported and Unregulated (IUU) fishing activity, which considerably impact both reef and pelagic fishes
    corecore